
eletter
Release 0.5.0

John Thorvald Wodder II

2021 Mar 27

CONTENTS

1 Tutorial 3
1.1 Basic Composition . 3
1.2 Addresses . 4
1.3 CC, BCC, etc. 5
1.4 Attachments . 5
1.5 Attaching E-mails to E-mails . 6
1.6 Date and Extra Headers . 6
1.7 multipart/mixed Messages . 7
1.8 multipart/alternative Messages . 8
1.9 multipart/related Messages . 9
1.10 Sending E-mails . 10
1.11 Decomposing Emails . 10

2 API 13
2.1 The compose() Function . 13
2.2 Addresses . 14
2.3 MailItem Classes . 14
2.4 Decomposition . 22
2.5 Exceptions . 24
2.6 Utility Functions . 25

3 Changelog 27
3.1 v0.5.0 (2021-03-27) . 27
3.2 v0.4.0 (2021-03-13) . 27
3.3 v0.3.0 (2021-03-11) . 27
3.4 v0.2.0 (2021-03-09) . 28
3.5 v0.1.0 (2021-03-09) . 28

4 Installation 29

5 Examples 31

6 Indices and tables 33

Python Module Index 35

Index 37

i

ii

eletter, Release 0.5.0

GitHub | PyPI | Documentation | Issues | Changelog

CONTENTS 1

https://github.com/jwodder/eletter
https://pypi.org/project/eletter/
https://eletter.readthedocs.io
https://github.com/jwodder/eletter/issues

eletter, Release 0.5.0

2 CONTENTS

CHAPTER

ONE

TUTORIAL

1.1 Basic Composition

eletter can be used to construct a basic text e-mail using the compose() function like so:

from eletter import compose

msg = compose(
subject="The subject of the e-mail",
from_="sender@domain.com",
to=["recipient@domain.com", "another.recipient@example.nil"],
text="This is the body of the e-mail. Write what you want here!\n",

)

Note: Observe that the from_ argument is spelled with an underscore. It has to be this way, because plain old from
is a keyword in Python.

If you want to construct an HTML e-mail, use the html keyword instead of text:

from eletter import compose

msg = compose(
subject="The subject of the e-mail",
from_="sender@domain.com",
to=["recipient@domain.com", "another.recipient@example.nil"],
html=(

"<p>This is the body of the e-mail."
" Write what you want here!</p>\n"

),
)

By specifying both text and html, you’ll get an e-mail whose HTML part is displayed if the e-mail reader supports
it and whose text part is displayed instead on lower-tech clients.

from eletter import compose

msg = compose(
subject="The subject of the e-mail",
from_="sender@domain.com",
to=["recipient@domain.com", "another.recipient@example.nil"],
text="This is displayed on plain text clients.\n",

(continues on next page)

3

eletter, Release 0.5.0

(continued from previous page)

html="<p>This is displayed on graphical clients.<p>\n",
)

1.2 Addresses

In the examples so far, e-mail addresses have just been specified as, well, addresses. However, addresses usually
belong to people or organizations with names; we can include these names alongside the addresses by constructing
Address objects from pairs of “display names” and e-mail addresses:

from eletter import Address, compose

msg = compose(
subject="The subject of the e-mail",
from_=Address("Sender's name goes here", "sender@domain.com"),
to=[

Address("Joe Q. Recipient", "recipient@domain.com"),
Address("Jane Z. Another-Recipient", "another.recipient@example.nil"),

],
text="This is the body of the e-mail. Write what you want here!\n",

)

Sometimes addresses come in named groups. We can represent these with the Group class, which takes a name for
the group and an iterable of address strings and/or Address objects:

from eletter import Address, Group, compose

msg = compose(
subject="The subject of the e-mail",
from_="sender@domain.com",
to=[

Group(
"friends",
[

Address("Joe Q. Recipient", "recipient@domain.com"),
Address("Jane Z. Another-Recipient", "another.recipient@example.nil"),
"anonymous@nowhere.nil",

],
),
Address("Mr. Not-in-a-Group", "ungrouped@unkno.wn"),
Group(

"enemies",
[

"that.guy@over.there",
"knows.what.they.did@ancient.history",
Address("Anemones", "sea.flora@ocean.net"),

],
),

],
text="This is the body of the e-mail. Write what you want here!\n",

)

4 Chapter 1. Tutorial

eletter, Release 0.5.0

1.3 CC, BCC, etc.

Besides From and To addresses, compose() also accepts optional arguments for CC, BCC, Reply-To, and
Sender addresses:

from eletter import Address, compose

msg = compose(
from_=Address("Mme E.", "me@here.com"),
to=["you@there.net", Address("Thaddeus Hem", "them@hither.yon")],
cc=[Address("Cee Cee Cecil", "ccc@seesaws.cc"), "coco@nu.tz"],
bcc=[

"eletter@depository.nil",
Address("Secret Cabal", "illuminati@new.world.order"),
"mom@house.home",

],
reply_to="replyee@some.where",
sender="steven.ender@big.senders",
subject="To: Everyone",
text="Meeting tonight! You know the place. Bring pizza.\n",

)

Note: The to, cc, and bcc arguments always take lists or iterables of addresses. from_ and reply_to, on the
other hand, can be set to either a single address or an iterable of addresses. sender must always be a single address.

1.4 Attachments

Attachments come in two common types: text and binary. eletter provides a class for each, TextAttachment
and BytesAttachment.

We can construct a BytesAttachment as follows:

from eletter import BytesAttachment

attachment = BytesAttachment(
b'... binary data goes here ...',
filename="name-of-attachment.dat"

)

This will create an application/octet-stream attachment with an “attachment” disposition (meaning that
most clients will just display it as a clickable icon). To set the content type to something more informative, set the
content_type parameter to the relevant MIME type. To have the attachment displayed inline (generally only an
option for images & videos), set the inline parameter to true. Hence:

from eletter import BytesAttachment

attachment = BytesAttachment(
b'... binary data goes here ...',
filename="name-of-attachment.png"
content_type="image/png",
inline=True,

)

1.3. CC, BCC, etc. 5

eletter, Release 0.5.0

If your desired attachment exists as a file on your system, you can construct a BytesAttachment from the file
directly with the from_file() classmethod:

from eletter import BytesAttachment

attachment = BytesAttachment.from_file(
"path/to/file.dat",
content_type="application/x-custom",
inline=True,

)

The basename of the given file will be used as the filename of the attachment. (If you want to use a different name, set
the filename attribute on the attachment after creating it.) If content_type is not given, the MIME type of the
file will be guessed based on its file extension.

The TextAttachment class is analogous to BytesAttachment, except that it is constructed from a str instead
of bytes, and the content_type (which defaults to "text/plain") must be a text type.

Once you’ve created some attachment objects, they can be attached to an e-mail by passing them in a list as the
attachments argument:

from eletter import BytesAttachment, TextAttachment, compose

spreadsheet = TextAttachment.from_file("income.csv")
image = BytesAttachment.from_file("cat.jpg")

msg = compose(
subject="That data you wanted",
from_="sender@domain.com",
to=["recipient@domain.com"],
text="Here's that data you wanted, sir. And also the ... other thing.\n",
attachments=[spreadsheet, image],

)

1.5 Attaching E-mails to E-mails

On rare occasions, you may have an e-mail that you want to completely embed in a new e-mail as an attachment.
With eletter, you can do this with the EmailAttachment class. It works the same as BytesAttachment
and TextAttachment, except that the content must be an email.message.EmailMessage instance, and
you can’t set the Content-Type (which is always message/rfc822). Like the other attachment classes,
EmailAttachment also has a from_file() classmethod for constructing an instance from an e-mail in a file.

1.6 Date and Extra Headers

compose() takes two more parameters that we haven’t mentioned yet. First is date, which lets you set the Date
header in an e-mail to a given datetime.datetime instance. Second is headers, which lets you set arbitrary
extra headers on an e-mail by passing in a dict. Each value in the dict must be either a string or (if you want to set
multiple headers with the same name) an iterable of strings.

from datetime import datetime
from eletter import compose

msg = compose(

(continues on next page)

6 Chapter 1. Tutorial

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

eletter, Release 0.5.0

(continued from previous page)

subject="The subject of the e-mail",
from_="sender@domain.com",
to=["recipient@domain.com", "another.recipient@example.nil"],
text="This is the body of the e-mail. Write what you want here!\n",
date=datetime(2021, 3, 10, 17, 56, 36).astimezone(),
headers={

"User-Agent": "My Mail Application v.1",
"Priority": "urgent",
"Comments": [

"I like e-mail.",
"But no one ever looks at e-mails' sources, so no one will ever know.",

]
},

)

1.7 multipart/mixed Messages

All the e-mails constructed so far, when viewed in an e-mail client, have their attachments listed at the bottom. What if
we want to mix & match attachments and text, switching from text to an attachment and then back to text? eletter
lets you do this by providing TextBody and HTMLBody classes that can be &-ed with attachments to produce
multipart/mixed messages, like so:

from eletter import BytesAttachment, TextBody

part1 = TextBody("Look at the pretty kitty!\n")

snuffles = BytesAttachment.from_file("snuffles.jpeg", inline=True)

part2 = TextBody("Now look at this dog.\n")

rags = BytesAttachment.from_file("rags.jpeg", inline=True)

part3 = TextBody("Which one is cuter?\n")

mixed = part1 & snuffles & part2 & rags & part3

We can then convert mixed into an EmailMessage by calling its compose() method, which takes the same
arguments as the compose() function, minus text, html, and attachments.

msg = mixed.compose(
subject="The subject of the e-mail",
from_="sender@domain.com",
to=["recipient@domain.com", "another.recipient@example.nil"],

)

When the resulting e-mail is viewed in a client, you’ll see three lines of text with images between them.

Tip: As a shortcut, you can combine a bare str with an eletter object using | or the other overloaded operators
described below (& and ^), and that str will be automatically converted to a TextBody . The example above could
thus be rewritten:

from eletter import BytesAttachment, TextBody

(continues on next page)

1.7. multipart/mixed Messages 7

https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eletter, Release 0.5.0

(continued from previous page)

snuffles = BytesAttachment.from_file("snuffles.jpeg", inline=True)

rags = BytesAttachment.from_file("rags.jpeg", inline=True)

mixed = (
"Look at the pretty kitty!\n"
& snuffles
& "Now look at this dog.\n"
& rags
& "Which one is cuter?\n"

)

1.8 multipart/alternative Messages

Now that we know how to construct mixed messages, how do we use them to create messages with both mixed-HTML
and mixed-text payloads where the client shows whichever mixed payload it can support? The answer is the | operator;
using it to combine two eletter objects will give you a multipart/alternative object, representing an e-
mail message with two different versions of the same content that the client will then pick between.

from eletter import BytesAttachment, HTMLBody, TextBody

text1 = TextBody("Look at the pretty kitty!\n")
text2 = TextBody("Now look at this dog.\n")
text3 = TextBody("Which one is cuter?\n")

html1 = HTMLBody("<p>Look at the pretty kitty!</p>\n")
html2 = HTMLBody("<p>Now look at this dog.</p>\n")
html3 = HTMLBody("<p>Which one is cuter?</p>\n")

snuffles = BytesAttachment.from_file("snuffles.jpeg", inline=True)
rags = BytesAttachment.from_file("rags.jpeg", inline=True)

mixed_text = text1 & snuffles & text2 & rags & text3
mixed_html = html1 & snuffles & html2 & rags & html3

alternative = mixed_text | mixed_html

The alternative object can then be converted to an e-mail with the same compose() method that mixed objects
have.

Tip: In this specific example, we can save on e-mail size by instead creating a mixed message containing alternative
parts, like so:

mixed = (text1 | html1) & snuffles & (text2 | html2) & rags & (text3 | html3)

Tip: The parts of a multipart/alternative message should generally be placed in increasing order of prefer-
ence, which means that the text part should be on the left of the | and the HTML part should be on the right.

8 Chapter 1. Tutorial

eletter, Release 0.5.0

1.9 multipart/related Messages

Mixing plain text and attachments is all well and good, but when it comes to HTML, it’d be better if we could reference
attachments directly in, say, an tag’s src attribute. We can do this in three steps:

1. Assign each attachment’s content_id attribute a unique ID generated with email.utils.make_msgid.

2. Within the HTML document, refer to a given attachment via the URI cid:{content_id[1:-1]} — that
is, “cid:” followed by the attachment’s content_id with the leading & trailing angle brackets stripped off.

3. Combine the HTML body with the attachments using the ^ operator to make a multipart/related object.
The HTML body should be on the left end of the operator chain!

Example:

from email.utils import make_msgid
from eletter import BytesAttachment, HTMLBody

snuffles_cid = make_msgid()
rags_cid = make_msgid()

html = HTMLBody(f"""
<p>Look at the pretty kitty!

<div class="align: center;">
<img src="cid:{snuffles_cid[1:-1]}" width="500" height="500"

style="border: 1px solid blue;" />
</div>

<p>Now look at this dog.</p>

<div class="align: center;">
<img src="cid:{rags_cid[1:-1]}" width="500" height="200"

style="border: 1px solid red;" />
</div>

<p>Which one is cuter?</p>
""")

snuffles = BytesAttachment.from_file("snuffles.jpeg", inline=True, content_
→˓id=snuffles_cid)
rags = BytesAttachment.from_file("rags.jpeg", inline=True, content_id=rags_cid)

related = html ^ snuffles ^ rags

Tip: You can remember the fact that multipart/related objects use ^ by association with Content-ID\s,
which are enclosed in <...>, which look like a sideways ^!

Like mixed & alternative objects, related can then be converted to an e-mail with the compose() method. If you
want, you can even use | to combine it with a mixed-text message before composing.

1.9. multipart/related Messages 9

https://docs.python.org/3/library/email.utils.html#email.utils.make_msgid

eletter, Release 0.5.0

1.10 Sending E-mails

Once you’ve constructed your e-mail and turned it into an EmailMessage object, you can send it using Python’s
smtplib, imaplib, or mailbox modules or using a compatible third-party library. Actually doing this is beyond
the scope of this tutorial & library, but may I suggest outgoing, by yours truly?

1.11 Decomposing Emails

New in version 0.5.0.

If you have an email.message.EmailMessage instance (either composed using eletter or acquired else-
where) and you want to convert it into an eletter structure to make it easier to work with, eletter provides a
decompose() function for doing just that. Calling decompose() on an EmailMessage produces an Eletter
instance that has attributes for all of the fields accepted by the compose() method plus a content field containing
an eletter class.

Tip: If you want to decompose a message that is a plain email.message.Message instance but not an
EmailMessage instance, you need to first convert it into an EmailMessage before passing it to decompose()
or decompose_simplify(). This can be done with the message2email() function from the mailbits pack-
age.

If you want to decompose a message even further, you can call the decompose_simple() function on an
EmailMessage or call the simplify() method of an Eletter to produce a SimpleEletter instance. In
place of a content attribute, a SimpleEletter has text, html, and attachments attributes giving the
original message’s text and HTML bodies plus any attachments.

Once you’ve decomposed and/or simplified a message, you can examine its parts and do whatever you want with
that information. You can also manually modify the Eletter/SimpleEletter’s various attributes and then call
its compose() method (which takes no arguments) to recompose the instance into a modified EmailMessage.
Note that the attributes are of stricter types than what is accepted by the corresponding arguments to the compose()
function. In particular, addresses must be specified as Address instances, not as strings1, the from_ and reply_to
attributes must always be lists, and the values of the headers attribute must always be lists.

Note: Most EmailMessage instances can be decomposed into Eletter instances; those that can’t use
Content-Types not supported by eletter, i.e., message types other than message/rfc822 or multipart
types other than multipart/alternative, multipart/mixed, and multipart/related.

On the other hand, considerably fewer EmailMessage instances can be simplified into SimpleEletter in-
stances. Messages that cannot be simplified include messages without plain text or HTML parts, mixed messages that
alternate between plain text & HTML without supplying both types for every body part, multipart/related
messages with more than one part, multipart/mixed messages containing multipart/alternative parts
that do not consist of a plain text body plus an HTML body, and other unusual things. Trying to simplify such messages
will produce SimplificationErrors.

One category of messages can be simplified, but not without loss of information, and so they are not simpli-
fied by default: namely, multipart/mixed messages that alternate between bodies and attachments rather
than placing all attachments at the end of the message. By default, trying to simplify such a message pro-
duces a MixedContentError; however, if the unmix argument to decompose_simple() or Eletter.
simplify() is set to True, such messages will instead be simplified by separating the attachments from the bodies,

1 An e-mail address without a display name can be represented as an Address object by setting the display name to the empty string:
Address("", "user@domain.nil").

10 Chapter 1. Tutorial

https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/smtplib.html#module-smtplib
https://docs.python.org/3/library/imaplib.html#module-imaplib
https://docs.python.org/3/library/mailbox.html#module-mailbox
https://github.com/jwodder/outgoing
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://github.com/jwodder/mailbits
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/constants.html#True

eletter, Release 0.5.0

which are then concatenated with no indication of where the attachments were located in the text.

1.11. Decomposing Emails 11

eletter, Release 0.5.0

12 Chapter 1. Tutorial

CHAPTER

TWO

API

2.1 The compose() Function

eletter.compose(*, to: Iterable[Union[str, email.headerregistry.Address, email.headerregistry.Group]],
from_: Optional[Union[str, email.headerregistry.Address, email.headerregistry.Group,
Iterable[Union[str, email.headerregistry.Address, email.headerregistry.Group]]]]
= None, subject: Optional[str] = None, text: Optional[str] = None, html: Op-
tional[str] = None, cc: Optional[Iterable[Union[str, email.headerregistry.Address,
email.headerregistry.Group]]] = None, bcc: Optional[Iterable[Union[str,
email.headerregistry.Address, email.headerregistry.Group]]] = None, reply_to:
Optional[Union[str, email.headerregistry.Address, email.headerregistry.Group, It-
erable[Union[str, email.headerregistry.Address, email.headerregistry.Group]]]] =
None, sender: Optional[Union[str, email.headerregistry.Address]] = None, date:
Optional[datetime.datetime] = None, headers: Optional[Mapping[str, Union[str,
Iterable[str]]]] = None, attachments: Optional[Iterable[eletter.classes.Attachment]] =
None)→ email.message.EmailMessage

Construct an EmailMessage instance from a subject, From address, To addresses, and a plain text and/or
HTML body, optionally accompanied by attachments and other headers.

All parameters other than to and at least one of text and html are optional.

Changed in version 0.2.0: from_ and reply_to may now be passed lists of addresses.

Changed in version 0.4.0: from_ may now be None or omitted.

Changed in version 0.4.0: All arguments are now keyword-only.

Changed in version 0.5.0: subject may now be None or omitted.

Parameters

• subject (str) – The e-mail’s Subject line

• to (iterable of addresses) – The e-mail’s To line

• from_ (address or iterable of addresses) – The e-mail’s From line. Note
that this argument is spelled with an underscore, as “from” is a keyword in Python.

• text (str) – The contents of a text/plain body for the e-mail. At least one of text
and html must be specified.

• html (str) – The contents of a text/html body for the e-mail. At least one of text
and html must be specified.

• cc (iterable of addresses) – The e-mail’s CC line

• bcc (iterable of addresses) – The e-mail’s BCC line

13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eletter, Release 0.5.0

• reply_to (address or iterable of addresses) – The e-mail’s Reply-To
line

• sender (address) – The e-mail’s Sender line. The address must be a string or
Address, not a Group.

• date (datetime) – The e-mail’s Date line

• attachments (iterable of attachments) – A collection of attachments to ap-
pend to the e-mail

• headers (mapping) – A collection of additional headers to add to the e-mail. A
header value may be either a single string or an iterable of strings to add multiple head-
ers with the same name. If you wish to set an otherwise-unsupported address header like
Resent-From to a list of addresses, use the format_addresses() function to first
convert the addresses to a string.

Return type email.message.EmailMessage

Raises ValueError – if neither text nor html is set

2.2 Addresses

Addresses in eletter can be specified in three ways:

• As an "address@domain.com" string giving just a bare e-mail address

• As an eletter.Address("Display Name", "address@domain.com") instance pairing a per-
son’s name with an e-mail address

• As an eletter.Group("Group Name", iterable_of_addresses) instance specifying a group
of addresses (strings or Address instances)

Note: eletter.Address and eletter.Group are actually just subclasses of Address and Group from
email.headerregistry with slightly more convenient constructors. You can also use the standard library types
directly, if you want to.

class eletter.Address(display_name: str, address: str)
A combination of a person’s name and their e-mail address

class eletter.Group(display_name: str, addresses: Iterable[Union[str,
email.headerregistry.Address]])

New in version 0.2.0.

An e-mail address group

2.3 MailItem Classes

class eletter.MailItem
New in version 0.3.0.

Base class for all eletter message components

14 Chapter 2. API

https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#module-email.headerregistry
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address

eletter, Release 0.5.0

compose(*, to: Iterable[Union[str, email.headerregistry.Address, email.headerregistry.Group]],
from_: Optional[Union[str, email.headerregistry.Address, email.headerregistry.Group, Iter-
able[Union[str, email.headerregistry.Address, email.headerregistry.Group]]]] = None, sub-
ject: Optional[str] = None, cc: Optional[Iterable[Union[str, email.headerregistry.Address,
email.headerregistry.Group]]] = None, bcc: Optional[Iterable[Union[str,
email.headerregistry.Address, email.headerregistry.Group]]] = None, reply_to: Op-
tional[Union[str, email.headerregistry.Address, email.headerregistry.Group, Iter-
able[Union[str, email.headerregistry.Address, email.headerregistry.Group]]]] = None,
sender: Optional[Union[str, email.headerregistry.Address]] = None, date: Op-
tional[datetime.datetime] = None, headers: Optional[Mapping[str, Union[str, Iter-
able[str]]]] = None)→ email.message.EmailMessage

Convert the MailItem into an EmailMessage with the item’s contents as the payload and with the
given subject, From address, To addresses, and optional other headers.

All parameters other than to are optional.

Changed in version 0.4.0: from_ may now be None or omitted.

Changed in version 0.4.0: All arguments are now keyword-only.

Changed in version 0.5.0: subject may now be None or omitted.

Parameters

• subject (str) – The e-mail’s Subject line

• to (iterable of addresses) – The e-mail’s To line

• from_ (address or iterable of addresses) – The e-mail’s From line. Note
that this argument is spelled with an underscore, as “from” is a keyword in Python.

• cc (iterable of addresses) – The e-mail’s CC line

• bcc (iterable of addresses) – The e-mail’s BCC line

• reply_to (address or iterable of addresses) – The e-mail’s Reply-To
line

• sender (address) – The e-mail’s Sender line. The address must be a string or
Address, not a Group.

• date (datetime) – The e-mail’s Date line

• headers (mapping) – A collection of additional headers to add to the e-mail. A
header value may be either a single string or an iterable of strings to add multiple head-
ers with the same name. If you wish to set an otherwise-unsupported address header like
Resent-From to a list of addresses, use the format_addresses() function to first
convert the addresses to a string.

Return type email.message.EmailMessage

2.3. MailItem Classes 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage

eletter, Release 0.5.0

2.3.1 Attachments

class eletter.Attachment
Base class for the attachment classes

class eletter.BytesAttachment(content: bytes, filename: Optional[str], *, content_id: Op-
tional[str] = None, content_type: str = NOTHING, inline: bool
= False)

A binary e-mail attachment. content_type defaults to "application/octet-stream".

content: bytes
The body of the attachment

content_id: Optional[str]
New in version 0.3.0.

Content-ID header value for the item

content_type: str
The Content-Type of the attachment

filename: Optional[str]
The filename of the attachment

Changed in version 0.5.0: filename can now be None.

classmethod from_file(path: Union[bytes, str, os.PathLike[bytes], os.PathLike[str]], con-
tent_type: Optional[str] = None, inline: bool = False, content_id: Op-
tional[str] = None)→ BytesAttachment

New in version 0.2.0.

Construct a BytesAttachment from the contents of the file at path. The filename of the attachment
will be set to the basename of path. If content_type is None, the Content-Type is guessed based
on path’s file extension.

Changed in version 0.3.0: inline and content_id arguments added

inline: bool
Whether the attachment should be displayed inline in clients

class eletter.EmailAttachment(content: email.message.EmailMessage, filename: Optional[str],
*, content_id: Optional[str] = None, inline: bool = False)

New in version 0.2.0.

A message/rfc822 e-mail attachment

content: email.message.EmailMessage
The body of the attachment

content_id: Optional[str]
New in version 0.3.0.

Content-ID header value for the item

filename: Optional[str]
The filename of the attachment

Changed in version 0.5.0: filename can now be None.

classmethod from_file(path: Union[bytes, str, os.PathLike[bytes], os.PathLike[str]], inline:
bool = False, content_id: Optional[str] = None)→ EmailAttachment

Construct an EmailAttachment from the contents of the file at path. The filename of the attachment
will be set to the basename of path.

16 Chapter 2. API

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

eletter, Release 0.5.0

inline: bool
Whether the attachment should be displayed inline in clients

class eletter.TextAttachment(content: str, filename: Optional[str], *, content_id: Optional[str]
= None, content_type: str = NOTHING, inline: bool = False)

A textual e-mail attachment. content_type defaults to "text/plain" and must have a maintype of
text.

content: str
The body of the attachment

content_id: Optional[str]
New in version 0.3.0.

Content-ID header value for the item

content_type: str
The Content-Type of the attachment

filename: Optional[str]
The filename of the attachment

Changed in version 0.5.0: filename can now be None.

classmethod from_file(path: Union[bytes, str, os.PathLike[bytes], os.PathLike[str]], con-
tent_type: Optional[str] = None, encoding: Optional[str] = None, er-
rors: Optional[str] = None, inline: bool = False, content_id: Op-
tional[str] = None)→ TextAttachment

New in version 0.2.0.

Construct a TextAttachment from the contents of the file at path. The filename of the attachment
will be set to the basename of path. If content_type is None, the Content-Type is guessed based
on path’s file extension. encoding and errors are used when opening the file and have no relation
to the Content-Type.

Changed in version 0.3.0: inline and content_id arguments added

inline: bool
Whether the attachment should be displayed inline in clients

2.3.2 Body Classes

class eletter.HTMLBody(content: str, *, content_id: Optional[str] = None)
New in version 0.3.0.

A text/html e-mail body

content: str
The HTML source of the body

content_id: Optional[str]
New in version 0.3.0.

Content-ID header value for the item

class eletter.TextBody(content: str, *, content_id: Optional[str] = None)
New in version 0.3.0.

A text/plain e-mail body

content: str
The plain text body

2.3. MailItem Classes 17

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eletter, Release 0.5.0

content_id: Optional[str]
New in version 0.3.0.

Content-ID header value for the item

2.3.3 Multipart Classes

class eletter.Multipart
New in version 0.3.0.

Base class for all multipart classes. All such classes are mutable sequences of MailItems supporting the usual
methods (construction from an iterable, subscription, append(), pop(), etc.).

class eletter.Alternative(content=NOTHING, *, content_id: Optional[str] = None)
New in version 0.3.0.

A multipart/alternative e-mail payload. E-mails clients will display the resulting payload by choosing
whichever part they support best.

An Alternative instance can be created by combining two or more MailItems with the | operator:

text = TextBody("This is displayed on plain text clients.\n")
html = HTMLBody("<p>This is displayed on graphical clients.<p>\n")

alternative = text | html

Likewise, additional MailItems can be added to an Alternative instance with the |= operator:

Same as above:
alternative = Alternative()
alternative |= TextBody("This is displayed on plain text clients.\n")
alternative |= HTMLBody("<p>This is displayed on graphical clients.<p>\n")

Using | to combine a MailItem with a str automatically converts the str to a TextBody:

Same as above:

text = "This is displayed on plain text clients.\n"
html = HTMLBody("<p>This is displayed on graphical clients.<p>\n")

alternative = text | html

assert alternative.contents == [
TextBody("This is displayed on plain text clients.\n"),
HTMLBody("<p>This is displayed on graphical clients.<p>\n"),

]

When combining two Alternative instances with | or |=, the contents are “flattened”:

Same as above:
txtalt = Alternative([

TextBody("This is displayed on plain text clients.\n")
])
htmlalt = Alternative([

HTMLBody("<p>This is displayed on graphical clients.<p>\n")
])
alternative = txtalt | htmlalt
assert alternative.contents == [

(continues on next page)

18 Chapter 2. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eletter, Release 0.5.0

(continued from previous page)

TextBody("This is displayed on plain text clients.\n"),
HTMLBody("<p>This is displayed on graphical clients.<p>\n"),

]

Changed in version 0.4.0: Using | to combine a MailItem with a str now automatically converts the str
to a TextBody

content: List[eletter.classes.MailItem]
The MailItems contained within the instance

content_id: Optional[str]
New in version 0.3.0.

Content-ID header value for the item

class eletter.Mixed(content=NOTHING, *, content_id: Optional[str] = None)
New in version 0.3.0.

A multipart/mixed e-mail payload. E-mails clients will display the resulting payload one part after an-
other, with attachments displayed inline if their inline attribute is set.

A Mixed instance can be created by combining two or more MailItems with the & operator:

text = TextBody("Look at the pretty kitty!\n")
image = BytesAttachment.from_file("snuffles.jpeg", inline=True)
sig = TextBody("Sincerely, Me\n")

mixed = text & image & sig

Likewise, additional MailItems can be added to a Mixed instance with the &= operator:

Same as above:
mixed = Mixed()
mixed &= TextBody("Look at the pretty kitty!\n")
mixed &= BytesAttachment.from_file("snuffles.jpeg", inline=True)
mixed &= TextBody("Sincerely, Me\n")

Using & to combine a MailItem with a str automatically converts the str to a TextBody:

Same as above:
image = BytesAttachment.from_file("snuffles.jpeg", inline=True)

mixed = "Look at the pretty kitty!\n" & image & "Sincerely, Me\n"

assert mixed.contents == [
TextBody("Look at the pretty kitty!\n"),
BytesAttachment.from_file("snuffles.jpeg", inline=True),
TextBody("Sincerely, Me\n"),

]

When combining two Mixed instances with & or &=, the contents are “flattened”:

part1 = Mixed()
part1 &= TextBody("Look at the pretty kitty!\n")
part1 &= BytesAttachment.from_file("snuffles.jpeg", inline=True)

part2 = Mixed()
part2 &= TextBody("Now look at this dog.\n")

(continues on next page)

2.3. MailItem Classes 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eletter, Release 0.5.0

(continued from previous page)

part2 &= BytesAttachment.from_file("rags.jpeg", inline=True)
part2 &= TextBody("Which one is cuter?\n")

mixed = part1 & part2

assert mixed.contents == [
TextBody("Look at the pretty kitty!\n"),
BytesAttachment.from_file("snuffles.jpeg", inline=True),
TextBody("Now look at this dog.\n"),
BytesAttachment.from_file("rags.jpeg", inline=True),
TextBody("Which one is cuter?\n"),

]

Changed in version 0.4.0: Using & to combine a MailItem with a str now automatically converts the str
to a TextBody

content: List[eletter.classes.MailItem]
The MailItems contained within the instance

content_id: Optional[str]
New in version 0.3.0.

Content-ID header value for the item

class eletter.Related(content=NOTHING, start: Optional[str] = None, *, content_id: Optional[str]
= None)

New in version 0.3.0.

A multipart/related e-mail payload. E-mail clients will display the part indicated by the start param-
eter, or the first part if start is not set. This part may refer to other parts (e.g., images or CSS stylesheets) by
their Content-ID headers, which can be generated using email.utils.make_msgid.

Note: Content-ID headers begin & end with angle brackets (<...>), which need to be stripped off before
including the ID in the starting part.

A Related instance can be created by combining two or more MailItems with the ^ operator:

from email.utils import make_msgid

img_cid = make_msgid()

html = HTMLBody(
"<p>Look at the pretty kitty!</p>"
f'"
"<p>Isn't he darling?</p>"

)

image = BytesAttachment.from_file("snuffles.jpeg", content_id=img_cid)

related = html ^ image

Likewise, additional MailItems can be added to a Related instance with the ^= operator:

Same as above:

img_cid = make_msgid()

(continues on next page)

20 Chapter 2. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.utils.html#email.utils.make_msgid

eletter, Release 0.5.0

(continued from previous page)

related = Related()

related ^= HTMLBody(
"<p>Look at the pretty kitty!</p>"
f'"
"<p>Isn't he darling?</p>"

)

related ^= BytesAttachment.from_file("snuffles.jpeg", content_id=img_cid)

Using ^ to combine a MailItem with a str automatically converts the str to a TextBody , though this is
generally not all that useful, as you’ll usually want to create Related instances from HTMLBodys instead.

When combining two Related instances with ^ or ^=, the contents are “flattened”:

Same as above:

img_cid = make_msgid()

htmlrel = Related([
HTMLBody(

"<p>Look at the pretty kitty!</p>"
f'"
"<p>Isn't he darling?</p>"

)
])

imgrel = Related([
BytesAttachment.from_file("snuffles.jpeg", content_id=img_cid)

])

related = htmlrel ^ imgrel

assert related.contents == [
HTMLBody(

"<p>Look at the pretty kitty!</p>"
f'"
"<p>Isn't he darling?</p>"

),
BytesAttachment.from_file("snuffles.jpeg", content_id=img_cid),

]

Changed in version 0.4.0: Using ^ to combine a MailItem with a str now automatically converts the str
to a TextBody

content: List[eletter.classes.MailItem]
The MailItems contained within the instance

content_id: Optional[str]
New in version 0.3.0.

Content-ID header value for the item

get_root()→ eletter.classes.MailItem
New in version 0.5.0.

Retrieves the root part, i.e., the part whose content_id equals start, or the first part if start is not
set.

2.3. MailItem Classes 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eletter, Release 0.5.0

Raises ValueError – if the instance is empty or no part has a content_id equaling start

start: Optional[str]
The Content-ID of the part to display (defaults to the first part)

2.4 Decomposition

eletter.decompose(msg: email.message.EmailMessage)→ eletter.decompose.Eletter
New in version 0.5.0.

Decompose an EmailMessage into an Eletter instance containing a MailItem and a collection of head-
ers. Only structures that can be represented by eletter classes are supported.

All message parts that are not text/plain, text/html, multipart/*, or message/* are treated as
attachments. Attachments without filenames or an explicit “attachment” Content-Disposition are treated
as inline.

Any information specific to how the message is encoded is discarded (namely, “charset” parameters on text/*
parts, Content-Transfer-Encoding headers, and MIME-Version headers).

Headers on message sub-parts that do not have representations on MailItems are discarded (namely, every-
thing other than Content-Type, Content-Disposition, and Content-ID).

Raises

• TypeError – if any sub-part of msg is not an EmailMessage instance

• DecompositionError – if msg contains a part with an unrepresentable
Content-Type

eletter.decompose_simple(msg: email.message.EmailMessage, unmix: bool = False) → elet-
ter.decompose.SimpleEletter

New in version 0.5.0.

Decompose an EmailMessage into a SimpleEletter instance consisting of a text body and/or HTML
body, some number of attachments, and a collection of headers. The EmailMessage is first decomposed with
decompose() and then simplified by calling Eletter.simplify().

By default, a multipart/mixed message can only be simplified if all of the attachments come after all of
the message bodies; set unmix to True to separate the attachments from the bodies regardless of what order
they come in.

Raises

• TypeError – if any sub-part of msg is not an EmailMessage instance

• DecompositionError – if msg contains a part with an unrepresentable
Content-Type

• SimplificationError – if msg cannot be simplified

class eletter.Eletter
New in version 0.5.0.

A decomposed e-mail message

content: eletter.classes.MailItem
The message’s body

subject: Optional[str]
The message’s subject line, if any

22 Chapter 2. API

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/stdtypes.html#str

eletter, Release 0.5.0

from_: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s From addresses

to: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s To addresses

cc: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s CC addresses

bcc: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s BCC addresses

reply_to: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s Reply-To addresses

sender: Optional[email.headerregistry.Address]
The message’s Sender address, if any

date: Optional[datetime.datetime]
The message’s Date header, if set

headers: Dict[str, List[str]]
Any additional headers on the message. The header names are lowercase.

compose()→ email.message.EmailMessage
Convert the Eletter back into an EmailMessage

simplify(unmix: bool = False)→ eletter.decompose.SimpleEletter
Simplify the Eletter into a SimpleEletter, breaking down Eletter.content into a text body,
HTML body, and a list of attachments.

By default, a multipart/mixed message can only be simplified if all of the attachments come after all
of the message bodies; set unmix to True to separate the attachments from the bodies regardless of what
order they come in.

Raises SimplificationError – if msg cannot be simplified

class eletter.SimpleEletter
New in version 0.5.0.

A decomposed simple e-mail message, consisting of a text body and/or HTML body plus some number of
attachments and headers

text: Optional[str]
The message’s text body, if any

html: Optional[str]
The message’s HTML body, if any

attachments: List[eletter.classes.Attachment]
Attachments on the message

subject: Optional[str]
The message’s subject line, if any

from_: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s From addresses

to: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s To addresses

cc: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s CC addresses

2.4. Decomposition 23

https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group

eletter, Release 0.5.0

bcc: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s BCC addresses

reply_to: List[Union[email.headerregistry.Address, email.headerregistry.Group]]
The message’s Reply-To addresses

sender: Optional[email.headerregistry.Address]
The message’s Sender address, if any

date: Optional[datetime.datetime]
The message’s Date header, if set

headers: Dict[str, List[str]]
Any additional headers on the message. The header names are lowercase.

compose()→ email.message.EmailMessage
Convert the SimpleEletter back into an EmailMessage

2.5 Exceptions

exception eletter.errors.Error
Bases: Exception

New in version 0.5.0.

The superclass of all custom exceptions raised by eletter

exception eletter.errors.DecompositionError
Bases: eletter.errors.Error, ValueError

New in version 0.5.0.

Raised when eletter is asked to decompose an EmailMessage with an unrepresentable Content-Type

exception eletter.errors.SimplificationError
Bases: eletter.errors.Error, ValueError

New in version 0.5.0.

Raised when eletter is asked to simplify a message that cannot be simplified

exception eletter.errors.MixedContentError
Bases: eletter.errors.SimplificationError

New in version 0.5.0.

Subclass of SimplificationError raised when a multipart/mixed is encountered in which one or
more attachments precede a message body part; such messages can be forced to be simplified by setting the
unmix argument of simplify() or decompose_simple() to True.

24 Chapter 2. API

https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#True

eletter, Release 0.5.0

2.6 Utility Functions

eletter.assemble_content_type(maintype: str, subtype: str, **params: str)→ str
New in version 0.2.0.

Construct a Content-Type string from a maintype, subtype, and some number of parameters

Raises ValueError – if f"{maintype}/{subtype}" is an invalid Content-Type

eletter.format_addresses(addresses: Iterable[Union[str, email.headerregistry.Address,
email.headerregistry.Group]], encode: bool = False)→ str

Convert an iterable of e-mail address strings (of the form “foo@example.com”, without angle brackets or
a display name), Address objects, and/or Group objects into a formatted string. If encode is False (the
default), non-ASCII characters are left as-is. If it is True, non-ASCII display names are converted into RFC
2047 encoded words, and non-ASCII domain names are encoded using Punycode.

eletter.reply_quote(s: str, prefix: str = '> ')→ str
New in version 0.2.0.

Quote a text following the de facto standard for replying to an e-mail; that is, prefix each line of the text with
"> " (or a custom prefix), and if a line already starts with the prefix, omit any trailing whitespace from the
newly-added prefix (so "> already quoted" becomes ">> already quoted").

If the resulting string does not end with a newline, one is added. The empty string is treated as a single line.

2.6. Utility Functions 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3/library/email.headerregistry.html#email.headerregistry.Group
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://tools.ietf.org/html/rfc2047.html
https://tools.ietf.org/html/rfc2047.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Usenet_quoting

eletter, Release 0.5.0

26 Chapter 2. API

CHAPTER

THREE

CHANGELOG

3.1 v0.5.0 (2021-03-27)

• Attachments’ filenames can now be None

• Added a decompose() function for decomposing an EmailMessage into a MailItem plus headers

• Added a decompose_simple() function for decomposing an EmailMessage into a text body, HTML
body, attachments, and headers

• The subject argument to the compose() function & method can now be None/omitted

• If an address argument to compose() is set to an empty list, the corresponding header will no longer be present
in the resulting e-mail

• Gave Related a get_root() method

3.2 v0.4.0 (2021-03-13)

• Using |, &, or ^ on a MailItem and a str now automatically converts the str to a TextBody

• The from_ argument to the compose() function & method can now be None/omitted

• format_addresses() has been moved to mailbits but is still re-exported from this library for the time
being.

• Breaking: All arguments to the compose() function & method are now keyword-only

3.3 v0.3.0 (2021-03-11)

• Gave the from_file() classmethods inline and content_id arguments

• Gave all classes optional content_id attributes

• Added TextBody , HTMLBody , Alternative, Mixed, and Related classes for constructing complex
e-mails

27

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://github.com/jwodder/mailbits

eletter, Release 0.5.0

3.4 v0.2.0 (2021-03-09)

• Gave BytesAttachment and FileAttachment each a from_file() classmethod

• The from_ and reply_to arguments to compose() may now be passed lists of addresses

• Support address groups

• Added assemble_content_type(), format_addresses(), and reply_quote() utility functions

• Added an EmailAttachment class

3.5 v0.1.0 (2021-03-09)

Initial release

eletter provides functionality for constructing & deconstructing email.message.EmailMessage instances
without having to touch the needlessly complicated EmailMessage class itself. A simple function enables com-
position of e-mails with text and/or HTML bodies plus attachments, and classes are provided for composing more
complex multipart e-mails.

28 Chapter 3. Changelog

https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage

CHAPTER

FOUR

INSTALLATION

eletter requires Python 3.6 or higher. Just use pip for Python 3 (You have pip, right?) to install eletter and its
dependencies:

python3 -m pip install eletter

29

https://pip.pypa.io

eletter, Release 0.5.0

30 Chapter 4. Installation

CHAPTER

FIVE

EXAMPLES

Constructing an e-mail with the compose() function:

import eletter

TEXT = (
"Oh my beloved!\n"
"\n"
"Wilt thou dine with me on the morrow?\n"
"\n"
"We're having hot pockets.\n"
"\n"
"Love, Me\n"

)

HTML = (
"<p>Oh my beloved!</p>\n"
"<p>Wilt thou dine with me on the morrow?</p>\n"
"<p>We're having hot pockets.<p>\n"
"<p>Love, Me</p>\n"

)

with open("hot-pocket.png", "rb") as fp:
picture = eletter.BytesAttachment(

content=fp.read(),
filename="enticement.png",
content_type="image/png",

)

msg = eletter.compose(
subject="Meet Me",
from_="me@here.qq",
to=[eletter.Address("My Dear", "my.beloved@love.love")],
text=TEXT,
html=HTML,
attachments=[picture],

)

msg can then be sent like any other EmailMessage, say, by using outgoing.

For more complex e-mails, a set of classes is provided. Here is the equivalent of the HTML-with-image e-mail with
alternative plain text version from the email examples page in the Python docs:

from email.utils import make_msgid
import eletter

(continues on next page)

31

https://github.com/jwodder/outgoing
https://docs.python.org/3/library/email.examples.html

eletter, Release 0.5.0

(continued from previous page)

text = eletter.TextBody(
"Salut!\n"
"\n"
"Cela ressemble à un excellent recipie[1] déjeuner.\n"
"\n"
"[1] http://www.yummly.com/recipe/Roasted-Asparagus-Epicurious-203718\n"
"\n"
"--Pepé\n"

)

asparagus_cid = make_msgid()

html = eletter.HTMLBody(
"<html>\n"
" <head></head>\n"
" <body>\n"
" <p>Salut!</p>\n"
" <p>Cela ressemble à un excellent\n"
' <a href="http://www.yummly.com/recipe/Roasted-Asparagus-'
'Epicurious-203718">\n'
" recipie\n"
" déjeuner.\n"
" </p>\n"
f' \n'
" </body>\n"
"</html>\n"

)

image = eletter.BytesAttachment.from_file(
"roasted-asparagus.jpg",
inline=True,
content_id=asparagus_cid,

)

msg = (text | (html ^ image)).compose(
subject="Ayons asperges pour le déjeuner",
from_=eletter.Address("Pepé Le Pew", "pepe@example.com"),
to=[

eletter.Address("Penelope Pussycat", "penelope@example.com"),
eletter.Address("Fabrette Pussycat", "fabrette@example.com"),

],
)

32 Chapter 5. Examples

CHAPTER

SIX

INDICES AND TABLES

• genindex

• search

33

eletter, Release 0.5.0

34 Chapter 6. Indices and tables

PYTHON MODULE INDEX

e
eletter, 1

35

eletter, Release 0.5.0

36 Python Module Index

INDEX

A
Address (class in eletter), 14
Alternative (class in eletter), 18
assemble_content_type() (in module eletter), 25
Attachment (class in eletter), 16
attachments (eletter.SimpleEletter attribute), 23

B
bcc (eletter.Eletter attribute), 23
bcc (eletter.SimpleEletter attribute), 23
BytesAttachment (class in eletter), 16

C
cc (eletter.Eletter attribute), 23
cc (eletter.SimpleEletter attribute), 23
compose() (eletter.Eletter method), 23
compose() (eletter.MailItem method), 14
compose() (eletter.SimpleEletter method), 24
compose() (in module eletter), 13
content (eletter.Alternative attribute), 19
content (eletter.BytesAttachment attribute), 16
content (eletter.Eletter attribute), 22
content (eletter.EmailAttachment attribute), 16
content (eletter.HTMLBody attribute), 17
content (eletter.Mixed attribute), 20
content (eletter.Related attribute), 21
content (eletter.TextAttachment attribute), 17
content (eletter.TextBody attribute), 17
content_id (eletter.Alternative attribute), 19
content_id (eletter.BytesAttachment attribute), 16
content_id (eletter.EmailAttachment attribute), 16
content_id (eletter.HTMLBody attribute), 17
content_id (eletter.Mixed attribute), 20
content_id (eletter.Related attribute), 21
content_id (eletter.TextAttachment attribute), 17
content_id (eletter.TextBody attribute), 17
content_type (eletter.BytesAttachment attribute), 16
content_type (eletter.TextAttachment attribute), 17

D
date (eletter.Eletter attribute), 23
date (eletter.SimpleEletter attribute), 24

decompose() (in module eletter), 22
decompose_simple() (in module eletter), 22
DecompositionError, 24

E
eletter

module, 1
Eletter (class in eletter), 22
EmailAttachment (class in eletter), 16
Error, 24

F
filename (eletter.BytesAttachment attribute), 16
filename (eletter.EmailAttachment attribute), 16
filename (eletter.TextAttachment attribute), 17
format_addresses() (in module eletter), 25
from_ (eletter.Eletter attribute), 22
from_ (eletter.SimpleEletter attribute), 23
from_file() (eletter.BytesAttachment class method),

16
from_file() (eletter.EmailAttachment class method),

16
from_file() (eletter.TextAttachment class method),

17

G
get_root() (eletter.Related method), 21
Group (class in eletter), 14

H
headers (eletter.Eletter attribute), 23
headers (eletter.SimpleEletter attribute), 24
html (eletter.SimpleEletter attribute), 23
HTMLBody (class in eletter), 17

I
inline (eletter.BytesAttachment attribute), 16
inline (eletter.EmailAttachment attribute), 16
inline (eletter.TextAttachment attribute), 17

M
MailItem (class in eletter), 14

37

eletter, Release 0.5.0

Mixed (class in eletter), 19
MixedContentError, 24
module

eletter, 1
Multipart (class in eletter), 18

R
Related (class in eletter), 20
reply_quote() (in module eletter), 25
reply_to (eletter.Eletter attribute), 23
reply_to (eletter.SimpleEletter attribute), 24
RFC

RFC 2047, 25

S
sender (eletter.Eletter attribute), 23
sender (eletter.SimpleEletter attribute), 24
SimpleEletter (class in eletter), 23
SimplificationError, 24
simplify() (eletter.Eletter method), 23
start (eletter.Related attribute), 22
subject (eletter.Eletter attribute), 22
subject (eletter.SimpleEletter attribute), 23

T
text (eletter.SimpleEletter attribute), 23
TextAttachment (class in eletter), 17
TextBody (class in eletter), 17
to (eletter.Eletter attribute), 23
to (eletter.SimpleEletter attribute), 23

38 Index

	Tutorial
	Basic Composition
	Addresses
	CC, BCC, etc.
	Attachments
	Attaching E-mails to E-mails
	Date and Extra Headers
	multipart/mixed Messages
	multipart/alternative Messages
	multipart/related Messages
	Sending E-mails
	Decomposing Emails

	API
	The compose() Function
	Addresses
	MailItem Classes
	Decomposition
	Exceptions
	Utility Functions

	Changelog
	v0.5.0 (2021-03-27)
	v0.4.0 (2021-03-13)
	v0.3.0 (2021-03-11)
	v0.2.0 (2021-03-09)
	v0.1.0 (2021-03-09)

	Installation
	Examples
	Indices and tables
	Python Module Index
	Index

